


ME464-464 16Ω

Horn/Driver Combinations - 1.4 Inches

- Constant Directivity horn with DCX464-16 driver
- Time coherent coaxial ring radiator design (Patents EP3644623B1, US11343608B2)
- 80x60° nominal coverage*
- 113 dB sensitivity
- 220 W continuous program power capacity
- Neodymium magnet assembly
- (*revised 20/10/20)

Horn/Driver Combinations- 1.4 Inches

SPECIFICATIONS

Nominal Impedance	16 Ω
Nominal Coverage Horizon	tal 80.0 °
Nominal Coverage Vertical	60.0 °
Cutoff Frequency	0.3 kHz
Design	Constant Directivity
Material	Polyurethane

SPECIFICATIONS HF UNIT

Minimum Impedance	11.8 Ω
Nominal Power Handling ¹	80 W
Continuous power handling ²	160 W
Sensitivity (1W/1m) ³	107.5 dB
Frequency Range	3.5 - 18.0 kHz
Voice Coil Diameter	65 mm (2.56 in)
Flux Density	2.14 T
Recommended Crossover ⁴	4.0 kHz
HF Inductance	0.1 mH
Winding Material	Aluminium
Diaphragm Material	HT Polymer
Magnet Material	Neodymium

SPECIFICATIONS MF UNIT

MF Minimum Impedance	8.3 Ω
MF Nominal Power Handling ⁵	110 W
MF Continuous Power Handling	6 220 W
Sensitivity (1W/1m) ⁷	113.0 dE
MF Frequency Range	0.3 - 5.5 kHz
MF Voice Coil Diameter	100 mm (4.0 in
MF Flux Density	1.9 7
MF Recommended Crossover ⁸	0.3 kHz
MF Inductance	0.21 mF
MF Winding Material	Aluminium
Diaphragm Material	HT Polyme
Magnet Material	Neodymium

MOUNTING AND SHIPPING INFO

Baffle Cutout Dimension

538x470 mm (21.18x18.50 in)

152 mm (5.98 in) **Driver Diameter**

Dimensions 575x505x539 mm (22.64x19.88x21.22 in)

8.5 kg (18.74 lb)

- AES Standard
 Power on Continuous Program is defined as 3 dB greater then the Nominal rating.
 Applied RMS Voltage is set to 4 V for 16 ohms Nominal Impedance.
 12 dB/oct. Or higher slope high-pass filter.
 AES Standard
 Power on Continuous Program is defined as 3 dB greater then the second program is defined as 3 dB greater the second program is defined as 3 dB greater the second program is defined as 3 dB greater the second program is de